Embedding Servo

Servo aims to empower developers with a lightweight,
high-performance alternative for embedding web
technologies in applications.

github.com/servo/servo
Sevo.org

Classic embedding of a Web engine: a Web browser

Chrome content

Web Content

Alternative 1: Web content everywhere

Web content

Web Content

Example: https://github.com/browserhtml/browserhtml

Alternative 2: everything native

Chrome content

Web Content
with native
widgets

Translate DOM into native widgets? - React Native

Servo default embedder: minibrowser.rs

Chrome content: Rust with Egui

Canvas: 2d, WebGL,

WebGPU. Images, svg, ...
(uses variants of a combo

of Vello, wgpu, glow,

webrender)

Embedding Servo

Main AP surface: Goals of embedding Servo:

* Servo e Show Web content on the
o Builder and Delegate screen
e WebView

e Add (user-agent) features

e Builder and Delegate around Servo

e RenderingContext
e Window and Offscreen variants
e EventLoopWaker

Render loop:

o EventLoopWaker::wake

e Servo::spin_event_loop

o WebViewDelegate::notify_new_frame
_ready

e Request redraw from system

e WebView::paint

e RenderingContext::present

Time for some demos

Demo 1: mini-apps in super-app embedding Servo.

Demo 2: address bar suggestions.

Prior art: Firefox Suggest

@®© - servo.zulipchat.com/

(4014) Recent conversations - Servo - Zulip — servo.zulipchat.com

Firefox Suggest

servo/servo: Servo aims to empower developers with a lightt — github.com/servo/servo

& Automated testing* - The Servo Book — book.servo.org/hacking/testing.html#updating-web-test-expectations
Improve spec compliance of Blob Url store: resolve entry as | — github.com/servo/servo/issues/25226
(4012) Recent conversations - Servo - Zulip — servo.zulipchat.com/#recent
servo/mozjs: Servo's SpiderMonkey fork — github.com/servo/mozjs
Issues - servo/servo — github.com/servo/servo/issues

Clean Shutdown of Servo - Issue #30849 - servo/servo — github.com/servo/servo/issues/30849

https://support.mozilla.org/en-US/kb/firefox-suggest-faq

Prior art: Firefox Suggest

£o

O EJ &2 github.com/mozilla/application-servicesftree/main/components/suggest o7

application-services [components / suggest [

Suggest

The Suggest Rust component provides address bar search suggestions from Mozilla. This includes suggestions from sponsors, as well as
non-sponsored suggestions for other web destinations. These suggestions are part of the Firefox Suggest feature.

This component is integrated into Firefox Desktop, Android, and iOS.

Architecture

Search suggestions from Mozilla are stored in a Remote Settings collection. The Suggest component downloads these suggestions from
Remote Settings, stores them in a local SQLite database, and makes them available to the Firefox address bar. Because these suggestions
are stored and matched locally, Mozilla never sees the user's search queries.

This component follows the architecture of the other Application Services Rust components: a cross-platform Rust core, and platform-
specific bindings for Firefox Desktop, Android, and iOS. These bindings are generated automatically using the UniFFl tool.

https://support.mozilla.org/en-US/kb/firefox-suggest-faq

Prior art: Firefox Suggest

439 v fn query(&self, query: SuggestionQuery) —> Result<QueryWithMetricsResult> {

440 let mut metrics = SuggestQueryMetrics::default();

441 let mut suggestions = vec![];

442

443 let unique_providers = query.providers.iter().collect::<HashSet< >>();

444 let reader = &self.dbs()?.reader;

445 for provider in unique_providers {

446 let new_suggestions = metrics.measure_query(provider.to_string(), || {

447 reader.read(|dao| match provider {

448 SuggestionProvider::Amp => dao.fetch_amp_suggestions(&query),

449 SuggestionProvider::Wikipedia => dao.fetch_wikipedia_suggestions(&query),
450 SuggestionProvider::Amo => dao.fetch_amo_suggestions(&query),

451 SuggestionProvider::Yelp => dao.fetch_yelp_suggestions(&query),

452 SuggestionProvider::Mdn => dao.fetch_mdn_suggestions(&query),

453 SuggestionProvider: :Weather => dao.fetch_weather_suggestions(&query),
454 SuggestionProvider::Fakespot => dao.fetch_fakespot_suggestions(&query),
455 SuggestionProvider: :Dynamic => dao.fetch_dynamic_suggestions(&query),
456 1)

457 b &)

458 suggestions.extend(new_suggestions);

https://support.mozilla.org/en-US/kb/firefox-suggest-faq

Prior art: Firefox Suggest

542 /// Fetches Suggestions of type Wikipedia provider that match the given query
543 v pub fn fetch_wikipedia_suggestions(&self, query: &SuggestionQuery) —> Result<Vec<Suggestion>> {
544 let keyword_lowercased = &query.keyword.to_lowercase();

545 let suggestions = self.conn.query_rows_and_then_cached(

546 r#"

547 SELECT

548 s.id,

549 k.rank,

550 s.title,

551 s.url

552 FROM

553 suggestions s

554 JOIN

555 keywords k

556 ON k.suggestion_id = s.id

557 WHERE

558 s.provider = :provider

559 AND k.keyword = :keyword

560 AND NOT EXISTS (SELECT 1 FROM dismissed_suggestions WHERE url=s.url)
561 "#,

562 named_params! {

563 ":1keyword": keyword_lowercased,

564 ":provider": SuggestionProvider::Wikipedia

565 }

566 |row| —> Result<Suggestion> {

567 let suggestion_id: i64 = row.get("id")?;

——— L] . v e e LR

https://support.mozilla.org/en-US/kb/firefox-suggest-faq

Implement address bar suggestions

When you don't have a database of keywords and suggestions,
what do you do?

Let’s try to use an LLM; to preserve privacy of users, let’s run it locally.

Address bar suggestion system prompt

Your role

You are an address bar url predictor: using the current user input, as well as various data, you predict a list of possible urls.

Data to use as context
Besides your general knowledge of websites, use this list of urls, potentially empty, as further candidates:
{anchor_urls}

In all cases, do not predict the current url, which is: {current_url}

How to perform the prediction

You should assume the user does not type a url, but rather the name of a site. The user could also be typing some general concept, in which case you
should attempt to match it with a site. In all cases, do not over-think this: use quick and dirty heuristics and respond quickly.

Response format

Provide 1 or more of the most likely URL predictions, ordered by relevance, without duplicates, and making sure they are all valid URLs.
Your response should be a JSON array of URLs and nothing else.

Double check the spelling of urls, and the not include the current url in your predictions.

Assume safe browsing is on.

Example response format:

["https://github.com", "https://gitlab.com", "https://bitbucket.org"] Ll.:l

The current user input to use for the prediction

The current user input is: {user_input}

Chat action system prompt

Given a user input, try to predict a browser action.
Available browser actions are:
¢ Close
o To invoke it, return a JSON object in the following format: { action: String, value: null }
o Here is one example:
= User input: "I'm done for the day".
= Assistant output: { action: "CLOSE", value: null }
¢ The value param is always null.
o This action should be invoked if you think the user wants to close the browser.
e Nothing
o To invoke it, return a JSON object in the following format: { action: String, value: null }
o Here is one example:
= User input: "rrrrrrr".
= Assistant output: { action: "NOTHING", value: null }
o The value param is always null.
o This action should be invoked if you don't know what the user wants.
In all cases, return an object as valid JSON, nothing else.

User input: {user_input}

Thank you

