
May 6th, 2024

OHOS OpenHarmony OS for
Next Gen Mobile

Jonathan Schwender

Senior OS Engineer

3

What is OpenHarmony?

3

Empower a range of industries.Ultimate experience with software-hardware-chip-cloud
integration to support Huawei's high-quality products.

Third-party commercial releases & products

OpenHarmony

Advanced OS base for a connected, intelligent world

HUAWEI Open Source Community & Third-party

Unified ecosystem for apps and services

Image Source: Chen Haibo, STW 2023

5

OpenHarmony OS

8

350+ Software and Hardware Products Across Key Sectors

8

IndustryAerospaceEnergy Finance

Transportation Healthcare Education Government

Drones and industrial

terminals
Satellites

Cloud
Data is migrated to the

cloud to generate gas

reports and calibration

work orders.

Automatic data

reading and

comparison

Automatic

data panel

Mining and electric

power terminals

Financial terminals

Smart tunnels Harmony classroom
Smart medicine

cabinets
e-Government

terminals

9

• AOSP (Android) compatibility layer removed

• Apps need to use the new ArkUI framework based on ArkTS (TypeScript)

> All apps need to be rewritten to use ArkUI

> Huge effort to port the top 5000 apps to support (Open-) HarmonyOS

• Custom Kernel (with Linux / POSIX compatibility layer)

• Commercial Release： Q4 2024

• Target Audience

> First: Chinese Mainland

Harmony OS NEXT

https://www.theregister.com/2024/01/22/huawei_harmony_os_next/

10

• Huawei phone users spend 99% of their time in 5000 apps.

• Huge Porting effort

> 4000 out of the top 5000 apps already ported or being ported

> Ongoing discussions with the developers of the remaining 1000

• In China Mini-apps are extremely popular

> Mini web-based apps inside Wechat.

• Many Web developers are already very familiar with TypeScript

Harmony OS NEXT apps

https://www.theregister.com/2024/04/22/huawei_harmonyos_expansion/

12

• Dev Eco Studio is the official IDE for

OpenHarmony

• Latest Release: 4.1

• Dev Eco Studio IDE and the SDK are

available from the official release notes

> English release notes are not available yet.

• Features include:

> Debugging

> Hot reloading

> UI previewer

> Emulator

> Profiling / tracing

• Missing: Rust pluging

DevEco Studio IDE and SDK

https://docs.openharmony.cn/pages/v4.1/zh-cn/release-notes/OpenHarmony-v4.1-release.md/#%E9%85%8D%E5%A5%97%E5%85%B3%E7%B3%BB
https://gitee.com/openharmony/docs/blob/master/zh-cn/release-notes/OpenHarmony-v4.1-release.md#%E4%BB%8E%E9%95%9C%E5%83%8F%E7%AB%99%E7%82%B9%E8%8E%B7%E5%8F%96

13

Dev Eco Studio

• Harmony OS NEXT SDKs are still in

closed Developer Preview phase

14

Dev Eco Studio

• OpenHarmony 4.1 SDK is freely

available

• Can be installed automatically in the IDE

• Additionally select Native, if you want

to use C/C++/Rust code.

15

• Project Wizard to create an app, including all the

boilerplate

• Documentation of the package structure

• The build-profile.json5 in the module level

configuration contains a `targets` array, where

the `runtimeOS` can be set to either HarmonyOS

or OpenHarmony.

> Affects signing of the bundle

Dev Eco Studio

https://gitee.com/openharmony/docs/blob/master/en/application-dev/quick-start/application-package-structure-stage.md

16

• OpenHarmony apps can run on all OpenHarmony devices

• For Security reasons, apps must be signed

• Required signature depends on the OpenHarmony

distribution

• Hapsigner tool is used to sign an application bundle

• HarmonyOS: Signing keys can be automatically

generated in Dev Eco Studio

• OpenHarmony: Requires manually generating the keys

App Signing

https://gitee.com/openharmony/docs/blob/master/en/application-dev/security/hapsigntool-guidelines.md

18

OpenHarmony app (Stage Model)

19

Anatomy of an OpenHarmony App

Your App

AppScope

app.json5

oh-package.json5 build-profile.json5 hvigorfile.ts <module_name>

Module

declaration

App Metadata

Package

Manifest

https://github.com/jschwe/openharmony-docs/blob/ef9a18afde531f55e05abfcd83fe8affc9dc3dc3/en/application-dev/quick-start/app-configuration-file.md

20

Module

src

main

cpp ets resources module.json5

build-
profile.json5

hvigorfile.ts
oh-

package.json5

Anatomy of an OpenHarmony app module

20

https://github.com/jschwe/openharmony-docs/blob/ef9a18afde531f55e05abfcd83fe8affc9dc3dc3/en/application-dev/quick-start/module-configuration-file.md

21

• ets: Contains the Abilities and Pages of the module written in ArkTS

> Commonly: 1x UI Ability with multiple Pages

• ArkTS is the primary language for OpenHarmony apps

• cpp: Optional - Native C/C++ code built with CMake

> Types and Functions are declared via an `index.d.ts` file

> ArkTS code can import those types / functions

Anatomy of an OpenHarmony app module

21

Module

src

main

cpp ets resources module.json5

build-
profile.json5

hvigorfile.ts
oh-

package.json5

22

• Goals:

> Easy to read

> Performance and Efficiency

> Prevent common errors

• Static types:

> All types are known at compile-time

> any/unknown is forbidden

> Object layout cannot be changed at runtime

• projects that already follow the best TypeScript

practices can keep 90% to 97% of their codebase

intact.

• Further reading:

> ArkTS introduction

> ArkTS migration guide

ArkTS: Stricter TypeScript flavor
TypeScriptArkTS

https://gitee.com/openharmony/docs/blob/master/en/application-dev/quick-start/arkts-get-started.md
https://gitee.com/openharmony/docs/blob/master/en/application-dev/quick-start/typescript-to-arkts-migration-guide.md

23

• Additional built-in components

• ArkUI specific decorators

• Used within Pages.

ArkTS – ArkUI specific additions

23

24

Example ArkTS App - Entry Page Ability

24

25

Example: ArkTS App – Main page

Source-code: https://github.com/jschwe/ohos-rust-demo

26

Example: ArkTS app with native C++ code

Source-code: https://github.com/jschwe/ohos-rust-demo

27

• Assumption: `add` takes a long time –

We want to speed it up!

• Lots of Boilerplate:

> module and function registration

> Extracting the function arguments from the

javascript containers

> Corresponding ArkTS function definition

Example app C/C++ Code

ArkTS function declaration

28

• napi-rs is an existing “framework for building pre-

compiled Node.js addons in Rust”

> Community maintained fork with ohos support `napi-

ohos` under development

• Boilerplate is significantly reduced

> The ArkTS function declaration can be automatically

generated by a build-script.

Example app: Rust code

index.d.ts - Declaration

https://napi.rs/
https://github.com/ohos-rs/ohos-rs

29

• A prebuilt dynamic library can be placed under `<module_name>/libs/<arch>/lib<name>.so`

> We could setup Dev Eco Studio to build the Rust project and copy the library and the index.d.ts files.

• We could write an hvigor plugin in TypeScript

• C/C++ code is built with CMake

• The Corrosion CMake module can automatically import Cargo projects

> Automatically sets the correct linker and Rust compiler target

> The OpenHarmony SDK (4.1) ships CMake 3.16, which is missing a required feature

> The feature could be backported to an older Corrosion version

> Upstream CMake is missing one file `Platform/OHOS.cmake`

• Conclusion: For now the simplest solution is the first one.

How can we integrate the Rust library?

29

https://github.com/corrosion-rs/corrosion

30

• Popular grep alternative written in Rust

• Add the std library for our target

• We need to specify the linker explicitly

Experiment: Compiling Ripgrep for OHOS

31

• Example: servo, a rendering engine written in Rust

• Main servo components ~240K lines of Rust code

• 700+ Rust and C/C++ dependencies

• Multiple build systems involved

> cc-rs

> cmake

> autotools

• Simple UI (URL bar + Browser window)

What about bigger, native apps?

Servo Dependencies (Estimation)

Language Lines of Code

Rust 3.9 million

C++ 1.3 million

C 1.3 million

Counted with `scc` on results of `cargo vendor`, with

winapi*, windows* and ndk crates removed.

https://servo.org/

32

• Goal: Estimate how much code needs to be adapted to OHOS APIs

• Create a dummy library that depends on libservo and fix all compilation and linking errors

1. Figure out environment variables needed for building C/C++ dependencies (next slide)

> Set C/C++-Compilers, sysroot, pkg-config ...

2. Fix Rust dependencies failing to build for OpenHarmony

> Often the issue was already fixed by other community members – Just need to update the dependency

> But: Updating long dependency chains can be quite time-consuming!

> Sometimes backporting an OHOS fix to an older version of a crate can be a quick band-aid solution.

> Hardcode / stub everything else that still needs to be implemented (differently) for OpenHarmony

3. All dependencies compile ? -> Fix linking issues

> Often simply select feature to build the library from source

> Sometimes wrong dependencies get linked in.

- Example: `the target OS is Linux -> Must have X11 or wayland)

Step 1: Compile libservo for OpenHarmony

32

33

Magic environment variables

• OHOS_SDK_NATIVE: Set by Dev Eco Studio to the native Directory of the SDK

• OHOS_LLVM_BIN=${OHOS_SDK_NATIVE}/llvm/bin

• CARGO_TARGET_AARCH64_UNKNOWN_LINUX_OHOS_LINKER="${OHOS_LLVM_BIN}/aarch64-
unknown-linux-ohos-clang“

• PATH=${PATH}:${OHOS_LLVM_BIN}

Bindgen

LIBCLANG_PATH=${OHOS_SDK_NATIVE}/llvm/lib

CLANG_PATH=${OHOS_LLVM_BIN}/aarch64-unknown-linux-ohos-clang

Required to avoid

bindgen #2682

https://github.com/rust-lang/rust-bindgen/issues/2682

34

Magic environment variables Part 2

cc-rs and cmake-rs
CC_aarch64_unknown_linux_ohos=${OHOS_LLVM_BIN}/aarch64-unknown-linux-ohos-clang

CXX_aarch64_unknown_linux_ohos=${OHOS_LLVM_BIN}/aarch64-unknown-linux-ohos-clang++

AR=${OHOS_LLVM_BIN}/llvm-ar

CXXSTDLIB_aarch64_unknown_linux_ohos=c++

CMAKE_TOOLCHAIN_FILE_aarch64_unknown_linux_ohos=${OHOS_SDK_NATIVE}/build/cmake/ohos.toolchain.cmake

CMAKE_C_COMPILER_aarch64_unknown_linux_ohos=${CC_aarch64_unknown_linux_ohos}

CMAKE_CXX_COMPILER_aarch64_unknown_linux_ohos=${CXX_aarch64_unknown_linux_ohos}

pkg_config

PKG_CONFIG_SYSROOT_DIR_aarch64_unknown_linux_ohos=${OHOS_SDK_NATIVE}/sysroot

PKG_CONFIG_PATH_aarch64_unknown_linux_ohos="=${OHOS_SDK_NATIVE}/sysroot/usr/lib/pkgconfig:${OHOS_SDK
_NATIVE}/sysroot/usr/share/pkgconfig"

35

• In Step 1, we „fixed“ some compilation issues by using

unimplemented!() or todo!().

• Now we implement the missing parts as we hit them.

• But we can still take shortcuts, like hardcoding some values

to quickly get a demo.

Step 2: Create a minimal ArkTS app for libservo

35

36

• XComponent provides a window native

code can render to

• Start with the simplest possible UI, which is

just one Xcomponent

• Initialize servo from there

• Only minor changes required, in platform

specific code during the graphics

initialization phase

• After that servo loaded and rendered just

fine

ArkUI XComponent

36

37

Demo: Servo browser app on OpenHarmony

37

• The UI currently only consists of the URL bar and

the browser window

• The bare browsing experience works

• WebGL support is currenlty disabled

• Scrolling works, but fling support is not

implemented yet

• Callbacks from Rust to ArkTS are not implemented

yet (e.g. Updating the URL bar, if the user clicks a

link)

• In the process of upstreaming changes

• Demo ArkUI sources, Servo branch

https://github.com/jschwe/ServoDemo
https://github.com/jschwe/servo/tree/jschwender/ohosv3

38

• ArkUI <-> Libservo Layer

> Easy – Thanks to the trait system

• Adapt OS specific window initialization

> More challenging, Documentation could be improved

> Offscreen Buffer still on my todo list

• Adapt the font-loading

• Figure out all the Environment variables that need to be set for the build systems

> Also depends on the Host OS ...

• Create Rust bindings for OpenHarmony APIs

> Hilog, Hitrace

Demo: Servo – Changes required

38

39

• Since Rust 1.78: ohos is supported as a Tier 2 Rust target

> Follow the instructions to install the OpenHarmony SDK

> Install prebuilt std library via rustup:

> rustup target add aarch64-unknown-linux-ohos

• The linker should be explicitly set (e.g., via `CARGO_TARGET_$TARGET_LINKER`)

• Cross-Compiling pure Rust code generally works fine

> Some libc functions are purposely not available (1, 2)

• Cross-Compiling code with C/C++ dependencies is a bit more painful

> Depending on the involved build-systems a bunch of environment variables need to be set

> Some build-systems (autoconf) just fail if they don’t recognize `ohos` and need to be patched.

Summary: Rust on OpenHarmony

https://doc.rust-lang.org/rustc/platform-support/openharmony.html
https://gitee.com/openharmony/docs/blob/master/en/application-dev/reference/native-lib/musl-peculiar-symbol.md
https://gitee.com/openharmony/docs/blob/master/en/application-dev/reference/native-lib/guidance-on-ndk-libc-interfaces-affected-by-permissions.md

40

• Goal: Make Rust a first-class citizen for native OpenHarmony code

• Provide safe bindings for (more) native OpenHarmony APIs

• Setup a reusable Github CI action

• Explore if the changes required to use the napi-rs crates can be merged back upstream

• OpenHarmony provides the Function Flow Runtime Kit (FFRT) for coroutine based scheduling

> Ideally we would only have one coroutine runtime

Future work

https://gitee.com/openharmony/docs/blob/master/en/application-dev/ffrt/ffrt-overview.md

Thank you

